1. create_dataloaders ν•¨μˆ˜

def create_dataloaders(train_files, val_files, image_size, mean, std, batch_size):
    transform = ImageTransform(image_size, mean, std)
    
    train_dataset = DogvsCatDataset(train_files, transform=transform, phase='train')
    val_dataset = DogvsCatDataset(val_files, transform=transform, phase='val')
    
    train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
    
    dataloader_dict = {'train': train_dataloader, 'val': val_dataloader}
    
    return dataloader_dict

μ—­ν• 

  • ν•™μŠ΅(train)κ³Ό 검증(validation)용 λ°μ΄ν„°λ‘œλ”λ₯Ό λ™μ‹œμ— 생성
  • 두 λ°μ΄ν„°λ‘œλ”λ₯Ό λ”•μ…”λ„ˆλ¦¬λ‘œ λ¬Άμ–΄μ„œ λ°˜ν™˜

단계별 λ™μž‘

1단계: Transform 생성

transform = ImageTransform(image_size, mean, std)
  • 이미지 μ „μ²˜λ¦¬λ₯Ό λ‹΄λ‹Ήν•˜λŠ” λ³€ν™˜κΈ° 객체 생성
  • image_size: 이미지 λ¦¬μ‚¬μ΄μ¦ˆ 크기 (예: 224)
  • mean, std: μ •κ·œν™”μ— μ‚¬μš©ν•  평균과 ν‘œμ€€νŽΈμ°¨ (예: ImageNet 톡계값)
  • train/val λͺ¨λ‘ λ™μΌν•œ λ³€ν™˜κΈ° μ‚¬μš© (λ‚΄λΆ€μ μœΌλ‘œ phase에 따라 λ‹€λ₯΄κ²Œ λ™μž‘)

2단계: Dataset 생성

train_dataset = DogvsCatDataset(train_files, transform=transform, phase='train')
val_dataset = DogvsCatDataset(val_files, transform=transform, phase='val')

Train Dataset:

  • train_files: ν•™μŠ΅μš© 이미지 경둜 리슀트
  • phase='train': ν•™μŠ΅ λͺ¨λ“œ β†’ Data Augmentation 적용 (랜덀 크둭, ν”Œλ¦½ λ“±)
  • λͺ©μ : λͺ¨λΈμ΄ λ‹€μ–‘ν•œ λ³€ν˜• μ΄λ―Έμ§€λ‘œ ν•™μŠ΅ν•˜μ—¬ μΌλ°˜ν™” μ„±λŠ₯ ν–₯상 Validation Dataset:
  • val_files: κ²€μ¦μš© 이미지 경둜 리슀트
  • phase='val': 검증 λͺ¨λ“œ β†’ Augmentation μ—†μŒ, 쀑앙 크둭만 적용
  • λͺ©μ : μΌκ΄€λœ μ‘°κ±΄μ—μ„œ λͺ¨λΈ μ„±λŠ₯ 평가

3단계: DataLoader 생성

train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

Train DataLoader:

  • shuffle=True: λ§€ μ—ν¬ν¬λ§ˆλ‹€ 데이터 μˆœμ„œλ₯Ό λ¬΄μž‘μœ„λ‘œ μ„žμŒ
    • λͺ¨λΈμ΄ 데이터 μˆœμ„œλ₯Ό κΈ°μ–΅ν•˜μ§€ λͺ»ν•˜κ²Œ 함
    • ν•™μŠ΅ μ•ˆμ •μ„±κ³Ό μΌλ°˜ν™” μ„±λŠ₯ ν–₯상 Validation DataLoader:
  • shuffle=False: 데이터 μˆœμ„œλ₯Ό κ·ΈλŒ€λ‘œ μœ μ§€
    • 검증은 평가 λͺ©μ μ΄λ―€λ‘œ μˆœμ„œκ°€ μ„±λŠ₯에 영ν–₯을 μ£Όλ©΄ μ•ˆ 됨
    • μž¬ν˜„ κ°€λŠ₯ν•œ κ²°κ³Όλ₯Ό μ–»κΈ° μœ„ν•¨

4단계: λ”•μ…”λ„ˆλ¦¬λ‘œ λ°˜ν™˜

dataloader_dict = {'train': train_dataloader, 'val': val_dataloader}
return dataloader_dict
  • 두 λ°μ΄ν„°λ‘œλ”λ₯Ό ν•˜λ‚˜μ˜ λ”•μ…”λ„ˆλ¦¬λ‘œ λ¬Άμ–΄μ„œ λ°˜ν™˜
  • ν•™μŠ΅ λ£¨ν”„μ—μ„œ μ‰½κ²Œ μ ‘κ·Ό κ°€λŠ₯ μ‚¬μš© μ˜ˆμ‹œ:
dataloaders = create_dataloaders(train_files, val_files, 224, mean, std, 32)
 
for epoch in range(10):
    # ν•™μŠ΅
    for images, labels in dataloaders['train']:
        ...
    
    # 검증
    for images, labels in dataloaders['val']:
        ...

2. get_test_dataloader ν•¨μˆ˜

def get_test_dataloader(test_files, image_size, mean, std, batch_size=1):
    transform = ImageTransform(image_size, mean, std)
    test_dataset = DogvsCatDataset(test_files, transform=transform, phase='val')
    test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    
    return test_dataloader

μ—­ν• 

  • ν…ŒμŠ€νŠΈ(μΆ”λ‘ )용 λ°μ΄ν„°λ‘œλ” 생성
  • ν•™μŠ΅μ΄ μ™„λ£Œλœ λͺ¨λΈλ‘œ μ΅œμ’… μ„±λŠ₯ 평가 μ‹œ μ‚¬μš©

단계별 λ™μž‘

1단계: Transform 생성

transform = ImageTransform(image_size, mean, std)
  • 검증/ν…ŒμŠ€νŠΈμš© λ³€ν™˜κΈ° 생성 (ν•™μŠ΅ λ•Œμ™€ λ™μΌν•œ νŒŒλΌλ―Έν„° μ‚¬μš©)

2단계: Dataset 생성

test_dataset = DogvsCatDataset(test_files, transform=transform, phase='val')
  • phase='val': 검증 λͺ¨λ“œλ‘œ κ³ μ •
    • 이유: ν…ŒμŠ€νŠΈλŠ” Augmentation 없이 원본에 κ°€κΉŒμš΄ μƒνƒœμ—μ„œ 평가해야 곡정함
    • λžœλ€μ„±μ΄ 있으면 ν…ŒμŠ€νŠΈ κ²°κ³Όκ°€ 맀번 달라짐

3단계: DataLoader 생성

test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
  • batch_size=1: κΈ°λ³Έκ°’ 1 (ν•œ μž₯μ”© 처리)
    • μΆ”λ‘  μ‹œμ—λŠ” 속도보닀 μ •ν™•ν•œ κ°œλ³„ 예츑이 μ€‘μš”
    • ν•„μš”ν•˜λ©΄ 더 큰 배치 μ‚¬μ΄μ¦ˆ μ§€μ • κ°€λŠ₯
  • shuffle=False: μˆœμ„œ μœ μ§€
    • ν…ŒμŠ€νŠΈ κ²°κ³Όλ₯Ό 파일 μˆœμ„œλŒ€λ‘œ μ €μž₯ν•˜κ±°λ‚˜ 비ꡐ할 λ•Œ 유용

μ£Όμš” 차이점 비ꡐ

ꡬ뢄TrainValidationTest
Augmentation적용미적용미적용
shuffleTrueFalseFalse
batch_size큼 (32, 64 λ“±)큼 (32, 64 λ“±)μž‘μŒ (1~16)
λͺ©μ λͺ¨λΈ ν•™μŠ΅κ³Όμ ν•© μ²΄ν¬μ΅œμ’… μ„±λŠ₯ 평가
μ‚¬μš© μ‹œμ λ§€ 에포크맀 μ—ν¬ν¬ν•™μŠ΅ μ™„λ£Œ ν›„

전체 데이터 νŒŒμ΄ν”„λΌμΈ 흐름

1. 데이터 λΆ„ν• 
   └─ train_files, val_files, test_files

2. DataLoader 생성
   β”œβ”€ create_dataloaders() 
   β”‚   β”œβ”€ train_dataloader (shuffle=True, augmentation=ON)
   β”‚   └─ val_dataloader   (shuffle=False, augmentation=OFF)
   β”‚
   └─ get_test_dataloader()
       └─ test_dataloader  (shuffle=False, augmentation=OFF, batch=1)

3. ν•™μŠ΅ 루프
   for epoch in epochs:
       └─ train: train_dataloader μ‚¬μš©
       └─ validate: val_dataloader μ‚¬μš©

4. μ΅œμ’… 평가
   └─ test: test_dataloader μ‚¬μš©

핡심 포인트

1. Phase κ΅¬λΆ„μ˜ μ€‘μš”μ„±

  • phase='train': 데이터 μ¦κ°•μœΌλ‘œ λ‹€μ–‘μ„± 확보
  • phase='val': 증강 없이 μΌκ΄€λœ 평가

2. Shuffle μ „λž΅

  • Train: True β†’ ν•™μŠ΅ μ•ˆμ •μ„±
  • Val/Test: False β†’ μž¬ν˜„μ„±

3. Batch Size

  • Train/Val: 큰 배치둜 효율적 ν•™μŠ΅
  • Test: μž‘μ€ 배치둜 μ •ν™•ν•œ μΆ”λ‘